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Code Optimization: Minimize cudaMemcpy calls at function boundaries
Starting in R2022a, the code generator eliminates unnecessary cudaMemcpy calls in the generated
CUDA® code that might occur at the boundaries of functions that are not inlined.

For example, consider the MATLAB® function foo that accepts a double array in as input, scales
the input array, and returns an array of the same type and size as in.

function out = foo(in)
%#codegen

coder.gpu.kernelfun();
mid = in * 2;
out = foo1(mid);
end

function out = foo1(in)
coder.inline('never');
coder.gpu.kernelfun();
out = in + 3;
end

Generate a static CUDA library for the function foo, specifying the input as a 500-by-500 double
type.

cfg = coder.gpuConfig('lib');

codegen -config cfg foo -args {ones(500,500)} -report

The generated code contains two kernels, foo_kernel1 that scales the input array by 2 and
foo1_kernel2 that adds 3 to each element.

CUDA Kernels

Kernel
Name

Thread
Dimensi
ons

Block
Dimensi
ons

Input
Variable
s

Output
Variable
s

Stream Shared
Memory
Size

Minimu
m
Blocks
Per SM

Constan
t
Memory

Parent
Kernel

foo_kern
el1

[512,1,1] [489,1,1] gpu_in,b
_gpu_in

 0 0 1 0 None

foo1_ker
nel2

[512,1,1] [489,1,1] in,gpu_o
ut

 0 0 1 0 None

In R2022a, the intermediate variable mid remains on the GPU, eliminating the cudaMemcpys that
copy mid from GPU>CPU>GPU before calling the second kernel foo1_kernel2.

CUDA Memcpy (R2022a)

Destination
Variable Name

Source
Variable Name

Data Size Direction Conditional
Variable

Stream

gpu_in in 2000000 host->device NO_ENCLOSIN
G_CONDITION

0

out gpu_out 2000000 device->host NO_ENCLOSIN
G_CONDITION

0

R2022a
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CUDA Memcpy (Previous Releases)

Destination
Variable Name

Source
Variable Name

Data Size Direction Conditional
Variable

Stream

gpu_in in 2000000 host->device NO_ENCLOSIN
G_CONDITION

0

 b_gpu_in 2000000 device->host NO_ENCLOSIN
G_CONDITION

0

gpu_in in 2000000 host->device NO_ENCLOSIN
G_CONDITION

0

out gpu_out 2000000 device->host NO_ENCLOSIN
G_CONDITION

0

GPU Memory Manager: Additional customization options for GPU
memory pools
In R2022a, the GPU memory manager provides code configuration parameters listed in the table to
manage allocation and deallocation of memory blocks within GPU memory pools.

Code Configuration
Parameter

Description Value

In a GPU code configuration
object (coder.gpuConfig):
BlockAlignment

In the GPU Coder™ app: on the
GPU Code tab, Block
Alignment

Controls the alignment of the
blocks. The block sizes (bytes)
in the pool are a multiple of the
specified value.

Positive integer that is a power
of 2. Default value is 256.
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Code Configuration
Parameter

Description Value

In a GPU code configuration
object: FreeMode

In the GPU Coder app: on the
GPU Code tab, Free Mode

Controls when the memory
manager frees the GPU device
memory.

When set to 'Never', the
memory is freed only when the
memory manager is destroyed.

Use 'AtTerminate' to free
empty GPU pools when the
terminate function is called in
the generated code. For MEX
targets, memory is freed after
every call to the generated MEX
function. For other targets,
memory is freed when calling
the terminate function.

When set to
'AfterAllocate', empty
pools are freed after each call to
CUDA memory allocate.

'Never' (default) |
'AtTerminate' |
'AfterAllocate'

In a GPU code configuration
object: MinPoolSize

In the GPU Coder app: on the
GPU Code tab, Minimum Pool
Size

Specify the minimum pool size
in megabytes (MB).

Positive integer that is a power
of 2. Default value is 8.

In a GPU code configuration
object: MaxPoolSize

In the GPU Coder app: on the
GPU Code tab, Maximum Pool
Size

Specify the maximum pool size
in megabytes (MB).

The memory manager computes
the size levels using the
MinPoolSize and
MaxPoolSize parameters by
interpolating between the two
values in increasing powers of
2. For example, if the
MinPoolSize is 4 and the
MaxPoolSize is 1024, the size
levels are {4, 8, 16, 32, 64, 128,
256, 512, 1024}.

Positive integer that is a power
of 2. Default value is 2048.

For more information, see “GPU Memory Manager”.

R2022a
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GPU Memory Manager: Use memory pools for CUDA libraries
Starting in R2022a, you can enable GPU Coder memory manager for efficient allocation and
management of workspaces when generating code that uses NVIDIA® CUDA libraries, such as cuFFT,
cuBLAS, and cuSOLVER.

To use memory pools with CUDA libraries:

• In a GPU code configuration object (coder.gpuConfig), enable the MemoryManager and
EnableCUFFT, EnableCUBLAS, or EnableCUSOLVER properties.

• In the GPU Coder app, on the GPU Code tab, select GPU Memory Manager and Enable cuFFT,
Enable cuBLAS, or Enable cuSOLVER.

• In the Simulink® Configuration Parameters dialog box, Code Generation > GPU Code pane,
select the Memory manager and cuFFT, cuBLAS, or cuSOLVER parameters.

For more information, see “GPU Memory Manager”.

Simulink Code Generation: Control code generation using custom
system target files
In R2022a, you can control the code generation stage of the build process by using custom system
target files. For GPU code generation, any system target file compatible with C++ and based on
grt.tlc or ert.tlc files is supported. For more information, see “Code Generation from Simulink
Models with GPU Coder”.

To learn about creating custom target files, see “Customize System Target Files” (Simulink Coder).

Simulink Deep Learning: Generate code for dlnetwork workflows that
use deep learning arrays
In R2022a, you can generate code for dlnetwork and dlarray that you use to run inference with
dlnetwork. The dlnetwork object code generation supports the NVIDIA CUDA deep neural
network library (cuDNN) and the NVIDIA TensorRT high performance inference library for NVIDIA
GPUs.

You can use MATLAB Function block or the Predict or Image Classifier block from the Deep Neural
Networks library to import the dlnetwork into Simulink.

Generate CUDA code for half-precision data types in MATLAB Function
blocks
You can now generate CUDA code for half-precision data types in MATLAB Function blocks.

Code generation from MATLAB for dlnetwork objects that contain
image sequences
Starting in R2022a, you can generate code for the dlnetwork object that has image sequence inputs.
Code generation support includes:
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• A dlarray input containing image sequences that have 'SSCT' or 'SSCBT' data formats.
• Multi-input dlnetwork with heterogeneous input layers.

For more information, see dlnetwork.

Deep Learning Arrays: Generate code for more functions that use
dlarray
In R2022a, you can generate code for additional MATLAB functions that use dlarray inputs. Code
generation includes:

• Binary math operations — Use power to perform binary element-wise power (.^) operation.
• Other math operations — Perform matrix multiplication by using mtimes. Use pagemtimes to

perform page-wise matrix multiplication.

Mixed-Precision Deep Learning: Perform inference in INT8 precision
for fully connected layer
You can now generate code in 8-bit integer precision for the fullyConnectedLayer by using the
CUDA Deep Neural Network library (cuDNN) library.

Deep Learning Networks: Generate code for additional networks
Code generation by using the CUDA Deep Neural Network library (cuDNN) library supports these
additional networks:

• yolov4ObjectDetector – YOLO v4 object detector. This feature requires the functions in the
Computer Vision Toolbox™ Model for YOLO v4 Object Detection support package.

• yolov3ObjectDetector – YOLO v3 object detector. This feature requires the functions in the
Computer Vision Toolbox Model for YOLO v3 Object Detection support package.

• pointPillarsObjectDetector – PointPillars network to detect objects in lidar point clouds.
This feature requires the Lidar Toolbox™.

Code generation by using the NVIDIA TensorRT Library supports these additional networks:

• Convolutional plus recurrent neural networks.
• Stateful LSTM, BiLSTM, and GRU.
• yolov4ObjectDetector – YOLO v4 object detector. This feature requires the functions in the

Computer Vision Toolbox Model for YOLO v4 Object Detection support package.
• yolov3ObjectDetector – YOLO v3 object detector. This feature requires the functions in the

Computer Vision Toolbox Model for YOLO v3 Object Detection support package.
• pointPillarsObjectDetector – PointPillars network to detect objects in lidar point clouds.

This feature requires the Lidar Toolbox.

For more information, see “Supported Networks, Layers, and Classes”.

R2022a
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Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• nnet.keras.layer.ClipLayer (Deep Learning Toolbox™) clips the input between the upper
and lower bounds.

• nnet.keras.layer.PreluLayer (Deep Learning Toolbox) for parametric rectified linear unit.
• nnet.keras.layer.TimeDistributedFlattenCStyleLayer (Deep Learning Toolbox)
flattens a sequence of input image into a sequence of vector, assuming C-style (or row-major)
storage ordering of the input layer.

• nnet.onnx.layer.ClipLayer (Deep Learning Toolbox) clips the input between the upper and
lower bounds.

• nnet.onnx.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox) for global
average pooling layer for spatial data.

• nnet.onnx.layer.PreluLayer (Deep Learning Toolbox) for parametric rectified linear unit.
• nnet.onnx.layer.SigmoidLayer (Deep Learning Toolbox) for sigmoid activation layer.
• nnet.onnx.layer.TanhLayer (Deep Learning Toolbox) for hyperbolic tangent activation layer.

Code generation by using the NVIDIA TensorRT Library supports these additional layers:

• nnet.keras.layer.ClipLayer (Deep Learning Toolbox) clips the input between the upper and
lower bounds.

• nnet.keras.layer.PreluLayer (Deep Learning Toolbox) for parametric rectified linear unit.
• nnet.keras.layer.TimeDistributedFlattenCStyleLayer (Deep Learning Toolbox)
flattens a sequence of input image into a sequence of vector, assuming C-style (or row-major)
storage ordering of the input layer.

• nnet.onnx.layer.ClipLayer (Deep Learning Toolbox) clips the input between the upper and
lower bounds.

• nnet.onnx.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox) for global
average pooling layer for spatial data.

• nnet.onnx.layer.PreluLayer (Deep Learning Toolbox) for parametric rectified linear unit.
• nnet.onnx.layer.SigmoidLayer (Deep Learning Toolbox) for sigmoid activation layer.
• nnet.onnx.layer.TanhLayer (Deep Learning Toolbox) for hyperbolic tangent activation layer.

Code generation for ARM® Mali GPUs by using the ARM Compute Library supports these additional
layers:

• nnet.onnx.layer.GlobalAveragePooling2dLayer (Deep Learning Toolbox) for global
average pooling layer for spatial data.

• nnet.onnx.layer.SigmoidLayer (Deep Learning Toolbox) for sigmoid activation layer.
• nnet.onnx.layer.TanhLayer (Deep Learning Toolbox) for hyperbolic tangent activation layer.

For more information, see “Supported Layers”.

Code generation for more Image Processing Toolbox functions
Generate optimized CUDA code for these additional Image Processing Toolbox™ functions:
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• adapthisteq
• imfindcircles
• mat2gray
• regionfill

Code generation for more Lidar Toolbox functions
Generate optimized CUDA code for these additional Lidar Toolbox functions:

• pcfitcuboid
• segmentGroundSMRF

Functionality being removed or changed
Unified memory allocation mode on host being removed
Warns

In a future release, the unified memory allocation (cudaMallocManaged) mode will be removed
when targeting NVIDIA GPU devices on the host development computer. You can continue to use
unified memory allocation mode when targeting NVIDIA embedded platforms.

When generating CUDA code from MATLAB, set the MallocMode property of the coder.gpuConfig
code configuration object to 'discrete'.

When generating CUDA code from Simulink models, select 'discrete' for the Memory mode
parameter in the Code Generation > GPU Code pane.

R2022a

1-8



R2021b

Version: 2.2

New Features

Bug Fixes

Version History

2



GPU Memory Manager: Improve allocation efficiency and run-time
performance through GPU memory pools
In R2021b, you can use the GPU memory manager for efficient memory allocation, management, and
improving run-time performance. The GPU memory manager creates a collection of large GPU
memory pools and manages allocation and deallocation of chunks of memory blocks within these
pools. By creating large memory pools, the memory manager reduces the number of calls to the
CUDA memory APIs, improving run-time performance. You can use the GPU memory manager for
MEX and standalone CUDA code generation.

To enable the GPU memory manager, use one of these methods:

• In a GPU code configuration object (coder.gpuConfig), enable the MemoryManager property.
• In the GPU Coder app, on the GPU Code tab, select GPU Memory Manager.
• In the Simulink Configuration Parameters dialog box, Code Generation > GPU Code pane,

select the Memory manager parameter.

Atomic Functions: Generate code that uses CUDA atomic intrinsics
In R2021b, you can generate code that takes advantage of CUDA device-wide arithmetic and bitwise
atomic functions. Atomic functions perform read-modify-write operations on a value in the global or
shared memory space of the GPU. These operations are performed atomically. No other thread can
access this memory address before the read-modify-write operation is complete.

To generate the corresponding CUDA atomic function calls, use the GPU Coder function listed in this
table.

Arithmetic Functions

Function Name Description
gpucoder.atomicAdd Atomically add a specified value to a variable in

global or shared memory.
gpucoder.atomicCAS Atomically compare and swap the value of a

variable in global or shared memory.
gpucoder.atomicDec Atomically decrement a variable in global or

shared memory within a specified upper bound.
gpucoder.atomicExch Atomically exchange a variable in global or

shared memory with the specified value.
gpucoder.atomicInc Atomically increment a variable in global or

shared memory within a specified upper bound.
gpucoder.atomicMax Atomically find the maximum value between a

specified value and a variable in global or shared
memory.

gpucoder.atomicMin Atomically find the minimum value between a
specified value and a variable in global or shared
memory.

gpucoder.atomicSub Atomically subtract a specified value from a
variable in global or shared memory.

R2021b
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Bitwise Functions
Function Name Description
gpucoder.atomicAnd Atomically perform bitwise AND between a

specified value and a variable in global or shared
memory.

gpucoder.atomicOr Atomically perform bitwise OR between a
specified value and a variable in global or shared
memory.

gpucoder.atomicXor Atomically perform bitwise XOR between a
specified value and a variable in global or shared
memory.

Improvements to reduction operations by using gpucoder.reduce
The R2021b release contains improvements to the gpucoder.reduce function that enable you to:

• Perform reduction operations along a specified dimension.
• Apply a preprocessing function to the elements of the input array before performing the reduction

operation.

For example, to find the sum and max of the elements of an array A along dimension 2, run this code:

function [s1,s2] = myReduce(A)
   [s1,s2] = gpucoder.reduce(A, {@mySum, @myMax},'dim',2); 
end

function c = mySum(a,b)
   c = a+b;
end

function c = myMax(a,b)
   c = max(a,b);
end

To find the sum of the elements of an array A after scaling each element by 2, use this code:

function s = myReduce(A)
   s = gpucoder.reduce(A,@mySum,'preprocess',@myScale); 
end

function c = mySum(a,b)
   c = a+b;
end

function b = myScale(a)
   b = 2*a;
end

Function Inlining: Fine-tune readability and speed of generated code
In R2021b, GPU Coder provides access to global inlining settings in the code configuration
parameters that provides greater control over speed and readability of the generated MEX and
standalone CUDA code.
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In previous releases, GPU Coder always optimized inlining behavior for performance, ignoring these
global settings in the code configuration parameters.

To control inlining, use these settings.

Code Configuration
Parameter

Description Options

In a code configuration object:
InlineBetweenUserFunctio
ns

In the GPU Coder app: On the
All Settings tab, Inline
between user functions

Controls inlining behavior at all
call sites where a function that
you wrote calls another function
that you wrote

'Always' (default) | 'Speed' |
'Readability' | 'Never'

In a code configuration object:
InlineBetweenMathWorksFu
nctions

In the GPU Coder app: On the
All Settings tab, Inline
between MathWorks
functions

Controls inlining behavior at all
call sites where a MathWorks®

function calls another
MathWorks function

'Always' (default) | 'Speed' |
'Readability' | 'Never'

In a code configuration object:
InlineBetweenUserAndMath
WorksFunctions

In the GPU Coder app: On the
All Settings tab, Inline
between user and
MathWorks functions

Controls inlining behavior at all
call sites where a function that
you wrote calls a MathWorks
function, or a MathWorks
function calls a function that
you wrote

'Always' (default) | 'Speed' |
'Readability' | 'Never'

Option descriptions:

• 'Always': Always performs inlining at a call site.
• 'Speed': Uses internal heuristics to determine whether to perform inlining at a call site. This

setting usually leads to highly optimized code.
• 'Readability': Almost never inlines function calls, except for calls to very small functions.

Preserves modularity of code without sacrificing too much speed, whenever possible. Results in
highly readable code.

• 'Never': Never inlines function calls. Results in maximum readability. This setting might
significantly reduce the performance of the generated code.

For more information, see Control Inlining to Fine-Tune Performance and Readability of Generated
Code.

GPU Profiling: Generate code execution profiling report by using
NVIDIA Nsight Systems
You can now use gpucoder.profile with the NVIDIA Nsight systems software to generate an
execution profiling report for the generated CUDA code. The report provides metrics that help you
analyze your application algorithms and identify opportunities to optimize performance.

R2021b
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For version and setup requirements of NVIDIA Nsight systems, see Installing Prerequisite Products
and Setting Up the Prerequisite Products.

To learn about execution profiling by using the gpucoder.profile function, see GPU Execution
Profiling of the Generated Code.

Deep Learning Workflow: Update network parameters after code
generation
In R2021b, you can update learnable and state parameters of deep learning networks without
regenerating code for the network. You can update the network parameters for SeriesNetwork,
DAGNetwork and dlnetwork. Use the coder.regenerateDeepLearningParameters function to
regenerate files containing network learnables and states parameters. Parameter update supports
MEX and standalone code generation for the NVIDIA CUDA deep neural network library (cuDNN)
and the NVIDIA TensorRT high performance inference libraries.

For more information, see Update Network Parameters After Code Generation. For an example on
how to incrementally update the network learnables of a deep learning network, see Post-Code-
Generation Update of Deep Learning Network Parameters.

Deep Learning Arrays: Generate code for more functions that use
dlarray
In R2021b, you can generate code for additional MATLAB functions that use dlarray (Deep
Learning Toolbox) inputs. Code generation support includes:

• Unary math operations — Find the inverse tangent by using atan2.
• Binary math operations — Use minus(-), plus(+), rdivide(./), and times(.*) to perform

binary element-wise math operations.
• Reduction operations — Perform reduction operations on dlarray by using mean, prod, and sum.
• Comparison operations — Use max and min to find the maximum or minimum elements of a single

dlarray or between two formatted dlarray inputs.
• Indexing operations — Use colon, : for indexing into a dlarray.
• Logical operations — Use functions such as and and eq to perform logical operations on the data

within dlarray. For other supported logical operations, see Logical Operations.
• Size manipulation functions — Manipulate the dimensions of a dlarray by using reshape and

squeeze.
• Transposition operations — Use ctranspose, permute, ipermute, and transpose to transpose

dlarray matrices.
• Concatenation functions — Concatenate deep learning arrays by using cat, horzcat, and

vertcat.
• Conversion functions — Change the underlying dlarray data type by using the cast function.
• Size identification functions — Query the dimensions of the dlarray data by using iscolumn,

ismatrix, isrow, isscalar, and isvector.
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Custom Layers: Use dlarray in deep learning networks that have
custom layers
You can now generate code for custom deep learning layers that use deep learning arrays. Custom
layer code generation supports unformatted and formatted dlarray (Deep Learning Toolbox) for
MEX and standalone workflows. For other usage notes and limitations of custom layers with
dlarray, see Custom Layers.

Code generation from MATLAB for dlnetwork that contains sequences
In R2021b, you can generate code for dlnetwork (Deep Learning Toolbox) that has vector sequence
inputs. Code generation support includes:

• dlarray (Deep Learning Toolbox) containing vector sequences that have 'CT' or 'CBT' data
formats.

• A dlnetwork object that has multiple inputs.

For more information, see dlnetwork (Deep Learning Toolbox).

Mixed-Precision Deep Learning: Perform inference in INT8 precision
for additional networks
Code generation by using the NVIDIA TensorRT Library with inference computation in 8-bit integer
precision supports these additional networks:

• Object detector networks such as YOLOv2 and SSD.
• Regression and semantic segmentation networks.

For more information, see Deep Learning Prediction by Using NVIDIA TensorRT.

Simulink Deep Learning: Generate code for custom layers
In R2021b, you can generate CUDA code from Simulink models that have deep learning networks
containing custom layers. Custom layer code generation supports the NVIDIA CUDA deep neural
network library (cuDNN) and the NVIDIA TensorRT high performance inference library for NVIDIA
GPUs. When targeting the cuDNN library, the code generator supports both row-major and column-
major code generation for custom layers.

For other usage notes and limitations, see Custom Layers.

Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports this additional
layer:

• groupNormalizationLayer (Deep Learning Toolbox) normalizes a mini-batch of data across
grouped subsets of channels for each observation independently.

Code generation by using the NVIDIA TensorRT Library supports this additional layer:
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• groupNormalizationLayer (Deep Learning Toolbox) normalizes a mini-batch of data across
grouped subsets of channels for each observation independently.

For more information, see Supported Layers.

Code generation for page-wise matrix multiplication
In R2021b, you can generate CUDA code for the pagemtimes function to perform batched matrix
multiplication on pages of N-D arrays.

For usage notes and limitations, see pagemtimes.

Code generation for additional Computer Vision Toolbox functions
In R2021b, you can generate optimized CUDA code for these additional Computer Vision Toolbox
toolbox functions:

• pcdenoise (Computer Vision Toolbox)
• pcmerge (Computer Vision Toolbox)
• pcnormals (Computer Vision Toolbox)
• pctransform (Computer Vision Toolbox)
• pcfitplane (Computer Vision Toolbox)
• pcmapndt (Computer Vision Toolbox)

Code generation for more Image Processing Toolbox functions
Generate optimized CUDA code for these additional Image Processing Toolbox toolbox functions:

• regionprops (Image Processing Toolbox)
• imbilatfilt (Image Processing Toolbox)

Code generation for additional Signal Processing Toolbox function
• resample (Signal Processing Toolbox)

New and updated examples
This release updates the following example:

• Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection –
This example has been updated to use the new Deep Learning Object Detector (Computer Vision
Toolbox) block from the Computer Vision Toolbox.

This release adds the following new example:

• Ground Plane Segmentation and Obstacle Detection on NVIDIA Jetson Xavier™ NX Embedded
platform – This example shows ground plane segmentation of 3-D lidar data from a vehicle on
NVIDIA embedded platforms to find nearby obstacles. The example uses ground plane
segmentation and obstacle detection application to illustrate:
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• C++ and CUDA code generation for the ground plane segmentation and obstacle detection
algorithm by using MATLAB Coder™ and GPU Coder.

• Verify behavior of the generated code on the target platform by using processor-in-the-loop
(PIL) simulation.

• Compare of the performance of the application on the CPU (C++) and the GPU (CUDA).
• Quantize Residual Network Trained for Image Classification and Generate CUDA Code – This

example shows how to quantize the learnable parameters in the convolution layers of a deep
learning neural network that has residual connections and has been trained for image
classification with CIFAR-10 data.

• Quantize Object Detectors and Generate CUDA® Code – This example shows how to generate
CUDA code for an SSD vehicle detector and a YOLO v2 vehicle detector that performs inference
computations in 8-bit integers.

• Parameter Pruning and Quantization of Image Classification Network – This example shows how
to prune the parameters of a trained neural network using two parameter score metrics: The
magnitude score and Synaptic Flow score.

• Generate CUDA ROS Node from Simulink (ROS Toolbox) – This example shows you how to
generate and build a CUDA ROS node from a Simulink model.

• Lane and Vehicle Detection in ROS Using YOLO v2 Deep Learning Algorithm (ROS Toolbox) – This
example shows how to use deep convolutional neural networks inside a ROS enabled Simulink
model to perform lane and vehicle detection. In this example, you first read traffic video as input
and publish them as sensor or image messages to a topic on the ROS network. Then you detect
vehicles, the left and right lane boundaries corresponding to the ego vehicle in every frame,
annotate the input image with the detections and publish them to a topic in the ROS network.
Finally, you generate CUDA optimized code for the ROS node from the Simulink model for lane
and vehicle detection.

• Sign Following Robot Using YOLOv2 Detection Algorithm with ROS in Simulink (ROS Toolbox) –
This example shows how to use Simulink to control a simulated robot running on a separate ROS-
based simulator. It then shows how to generate CUDA-optimized code for the ROS node, from the
Simulink model and deploy it to the localhost device.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed
cnncodegen Function: ARM Mali target support only

In R2021b, the cnncodegen function generates C++ code for only the ARM Mali GPU processor by
using the ARM Compute Library for computer vision and machine learning.

For all other targets, use the codegen command. To learn about targeting cuDNN targets by using
the codegen function, see Code Generation for Deep Learning Networks by Using cuDNN. To learn
about targeting TensorRT targets by using the codegen function, see Code Generation for Deep
Learning Networks by Using TensorRT.

Unified memory allocation mode on host being removed
Warns
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In a future release, the unified memory allocation (cudaMallocManaged) mode will be removed
when targeting NVIDIA GPU devices on the host development computer. You can continue to use
unified memory allocation mode when targeting NVIDIA embedded platforms.

When generating CUDA code from MATLAB, set the MallocMode property of the coder.gpuConfig
code configuration object to 'discrete'.

When generating CUDA code from Simulink models, select 'discrete' for the Memory mode
parameter in the Code Generation > GPU Code pane.
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Code Optimization: Control the number of blocks created during
kernel launch
In R2021a, you can specify the maximum number of blocks created during a kernel launch. Because
GPU devices have limited streaming multiprocessor (SM) resources, limiting the number of blocks for
each kernel can avoid performance losses from scheduling, loading and unloading of blocks. To
specify the maximum number of blocks for each kernel, use one of these methods:

• In a GPU code configuration object (coder.GpuCodeConfig), set a valid value for the
MaximumBlocksPerKernel property.

• In the GPU Coder app, on the GPU Code tab, set a valid value for Maximum Blocks Per Kernel.
• In the Simulink Configuration Parameters dialog box, Code Generation > GPU Code pane, set a

valid value for the Maximum blocks per kernel parameter.

If the number of iterations in a loop is greater than the maximum number of blocks per kernel, the
code generator creates CUDA kernels with striding.

When you specify the maximum number of blocks for each kernel, the code generator creates 1-D
kernels. To force the code generator to create 2-D or 3-D kernels, use the coder.gpu.kernel
pragma. The coder.gpu.kernel pragma takes precedence over the maximum number of kernels
for each block.

Generate code from MATLAB for dlnetwork workflows that uses deep
learning arrays
In R2021a, you can generate code for dlnetwork (Deep Learning Toolbox) and dlarray (Deep
Learning Toolbox) that you use to run inference with dlnetwork. Code generation support includes:

• Construction of formatted and unformatted dlarray
• Passing dlarray to entry-point functions and returning dlarray from entry-point functions
• Invoking a subset of functions on dlarray objects, including the object functions softmax (Deep

Learning Toolbox), sigmoid (Deep Learning Toolbox), and fullyconnect (Deep Learning
Toolbox)

• Passing formatted dlarray to the dlnetwork predict function inside an entry-point function.

See:

• Help topic: Code Generation for dlarray
• Example: Generate Digit Images on NVIDIA GPU Using Variational Autoencoder

Generate code that uses newer versions of NVIDIA cuDNN and
TensorRT libraries
In R2021a, you can generate CUDA code for layers and networks that uses these newer versions of
NVIDIA CUDA deep neural network library (cuDNN) and TensorRT high performance inference
library for NVIDIA GPUs.

• NVIDIA CUDA deep neural network library (cuDNN), version 8.1.0.
• NVIDIA TensorRT high performance inference library, version 7.2.x.

R2021a
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See Installing Prerequisite Products.

Version History
When performing inference in INT8 (8-bit integer) precision using cuDNN version 8.1.0, issues in the
NVIDIA library may cause significant degradation in performance.

Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports this additional
layer:

• featureInputLayer (Deep Learning Toolbox) inputs feature data to a network and applies data
normalization.

Code generation by using the cuDNN library with inference computation in 8-bit integer precision
supports this additional layer:

• maxPooling2dLayer (Deep Learning Toolbox) performs down-sampling by dividing the input into
rectangular pooling regions and computing the maximum of each region.

Code generation by using the NVIDIA TensorRT Library supports this additional layer:

• featureInputLayer (Deep Learning Toolbox) inputs feature data to a network and applies data
normalization.

Code generation for ARM Mali GPUs using the ARM Compute Library supports this additional layer:

• featureInputLayer (Deep Learning Toolbox) inputs feature data to a network and applies data
normalization.

For more information, see Supported Networks and Layers.

Code generation for additional Computer Vision Toolbox functions
In R2021a, you can generate optimized CUDA code for these additional Computer Vision Toolbox
toolbox functions:

• pcregisterndt (Computer Vision Toolbox)
• pcdownsample (Computer Vision Toolbox)
• pcbin (Computer Vision Toolbox)
• segmentGroundFromLidarData (Computer Vision Toolbox)

Code generation for additional Wavelet Toolbox functions
In R2021a, you can generate optimized CUDA code for these additional Wavelet Toolbox™ toolbox
functions:

• Discrete Wavelet Transforms — waverec (Wavelet Toolbox) and waverec2 (Wavelet Toolbox)
• Denoising — wdenoise (Wavelet Toolbox) and wdenoise2 (Wavelet Toolbox)
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Code generation for additional MATLAB functions
In R2021a, you can generate optimized CUDA code for these additional MATLAB toolbox functions:

• histcounts
• interp1

GPU Coder Support Package for NVIDIA GPUs is moved to MATLAB
Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms
Starting in R2021a, the GPU Coder Support Package for NVIDIA GPUs is named MATLAB Coder
Support Package for NVIDIA Jetson® and NVIDIA DRIVE® Platforms. To use this support package in
R2021a, you must have the MATLAB Coder product. For more information, see GPU Coder Supported
Hardware.

Functionality being removed or changed
cnncodegen Function: ARM Mali target support only
Warns

In a future release, the cnncodegen function will generate C++ code and build a static library for
only the ARM Mali GPU processor. You can continue to use the 'arm-compute-mali' value for the
'targetlib' argument to target an ARM Mali GPU by using the ARM Compute Library for
computer vision and machine learning.

For all other targets, use the codegen command. To learn about targeting cuDNN targets by using
the codegen function, see Code Generation for Deep Learning Networks by Using cuDNN. To learn
about targeting TensorRT targets by using the codegen function, see Code Generation for Deep
Learning Networks by Using TensorRT.

Deprecating support for unified memory allocation mode on host
Behavior change in future release

In a future release, support for the unified memory allocation (cudaMallocManaged) mode will be
removed when targeting NVIDIA GPU devices on the host development computer. You can continue to
use unified memory allocation mode when targeting NVIDIA embedded platforms.

When generating CUDA code from MATLAB, set the MallocMode property of the coder.gpuConfig
code configuration object to 'discrete'.

When generating CUDA code from Simulink models, select 'discrete' for the Memory mode
parameter in the Code Generation>GPU Code pane.
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Simulink Support: Generate, build, and deploy Simulink models to
NVIDIA GPUs
In R2020b, you can use GPU Coder to generate and execute optimized CUDA C++ code from
Simulink models that contain MATLAB Function blocks. The generated code calls optimized NVIDIA
CUDA libraries, including cuFFT, cuSolver, and cuBLAS.

You can use the generated CUDA code within Simulink to:

• Speed up the execution of your Simulink model by using NVIDIA GPUs. When you simulate a
model that contains a MATLAB Function block, the software generates CUDA MATLAB executable
(MEX) code from the block and dynamically links the generated code to Simulink. For more
information, see Simulation Acceleration by Using GPU Coder.

• Build an executable that you can use for rapid prototyping on NVIDIA GPUs. For more
information, see Code Generation from Simulink Models by Using GPU Coder.

• Deploy the Simulink models on embedded NVIDIA GPUs such as Jetson and DRIVE by using the
MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms. You can also
remotely communicate with the NVIDIA target and control the peripheral devices for prototyping.
For more information, see Targeting NVIDIA Embedded Boards.

Deep Learning Simulink Support: Generate, build, and deploy deep
learning networks in Simulink models to NVIDIA GPUs
In this release, you can use GPU Coder to generate and execute optimized CUDA C++ code for deep
learning networks in Simulink models. The generated code calls optimized NVIDIA CUDA libraries,
including cuDNN and TensorRT.

You can use the generated CUDA code within Simulink to:

• Speed up the execution of your Simulink model by using NVIDIA GPUs. When you simulate a
model that contains a MATLAB Function or Deep Learning Toolbox blocks, the software generates
CUDA MATLAB executable (MEX) code from the block and dynamically links the generated code
to Simulink.

• Build an executable that you can use for rapid prototyping on NVIDIA GPUs.

For more information, see Deep Learning in Simulink Using Deep Neural Networks Library and Deep
Learning in Simulink Using MATLAB Function Block. You can also deploy the Simulink models on
embedded NVIDIA GPUs such as Jetson and DRIVE by using the MATLAB Coder Support Package for
NVIDIA Jetson and NVIDIA DRIVE Platforms. For more information, see Targeting NVIDIA Embedded
Boards.

Simulink Support: SIL, PIL, and external mode simulations
Test numerical equivalence between model components and production code that you generate from
the components by using software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations. With
a SIL simulation, you test the behavior of generated source code on development computer.
Simulation does not test code compiled for target hardware because code is compiled for the
development computer. With a PIL simulation, you test the compiled object code that you intend to
deploy on a target hardware by running the object code on real target hardware.

R2020b

4-2

https://www.mathworks.com/help/releases/R2020b/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/simulation-acceleration-using-gpu-coder.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/code-generation-from-simulink-models-by-using-gpu-coder.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/targeting-nvidia-and-arm-embedded-boards.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/deep-learning-in-simulink-using-deep-neural-networks-library.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/deep-learning-in-simulink-by-using-gpu-coder.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/deep-learning-in-simulink-by-using-gpu-coder.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/targeting-nvidia-and-arm-embedded-boards.html
https://www.mathworks.com/help/releases/R2020b/gpucoder/ug/targeting-nvidia-and-arm-embedded-boards.html


To determine whether model components and generated code are numerically equivalent, compare
GPU acceleration and PIL results against normal mode results. For more information, see Numerical
Equivalence Testing

Use external mode simulations for rapid prototyping. With external mode simulation, you can:

• Modify or tune block parameters in real time. When you change parameters in your model,
Simulink downloads the new values to the executing target application.

• Monitor and save signal data from the executing target application.

For more information, see Parameter Tuning and Signal Monitoring Using External Mode.

Persistent Variables: Create persistent memory on the GPU
In this release, you can use the coder.gpu.persistentMemory pragma to allocate a variable as
persistent memory on the GPU. The variable must be fixed size and of a data type supported for GPU
code generation.

For example, when generating CUDA code for the entry-point function foo, the persistent variable p
is mapped to the GPU as variable with persistent memory.

function output = foo(input)
coder.gpu.kernelfun();
persistent p;
if isempty(p)
   p = zeros(1024,1);
end

coder.gpu.persistentMemory(p);
p = p + 1;
output = input + p;
end

Wavelet Toolbox Code Generation: Generate code for FFT-based FIR
filtering and Short-time Fourier transform functions
In R2020b, you can generate optimized CUDA code for the following additional Wavelet Toolbox
toolbox functions.

• modwt
• imodwt
• modwtmra
• dwt
• idwt
• dwt2
• idwt2
• wavedec
• wavedec2
• mdwtdec
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Deep Learning: Generate code for custom layers
In R2020b, you can generate CUDA code for deep learning networks that have custom deep learning
layers. Custom layer code generation supports NVIDIA CUDA deep neural network library (cuDNN)
and the NVIDIA TensorRT high performance inference library for NVIDIA GPUs. When targeting the
cuDNN library, the code generator supports both row-major and column-major code generation for
custom layers. For other usage notes and limitations, see Custom Layers.

To learn how to define custom deep learning layers, see Define Custom Deep Learning Layers (Deep
Learning Toolbox) and Define Custom Deep Learning Layer for Code Generation (Deep Learning
Toolbox). For an example on how to generate code for a network with custom layers, see Code
Generation For Object Detection Using YOLO v3 Deep Learning.

Multi-Input Networks: Generate code for networks that have multiple
inputs
In R2020b, you can generate code for networks that have multiple input layers. For information on
training multiple input networks, see Multiple-Input and Multiple-Output Networks (Deep Learning
Toolbox).

Convolutional Recurrent Neural Networks: Generate code for
convolutional LSTM
In this release, you can generate CUDA code for convolutional LSTM networks. Convolutional LSTM
is a type of LSTM network that is made up of convolutional and LSTM layers. Such a network is
useful for image and video classification applications where you use convolutional layers to extract
features from each frame independently. For more information, see Long Short-Term Memory
Networks (Deep Learning Toolbox).

Long Short-Term Memory (LSTM) Networks: Generate code for
network activations
You can generate code for the activations method and compute the network activations for a
specific layer of an LSTM network. For example, the following line of code returns the network
activations for the sequence or time series data you specify in sequences and the layer you specify
in layerIdx.

out = activations(mynet,sequences,layerIdx,'OutputAs','Channels');

Workflow improvements
In R2020b, when generating CUDA MEX with GPU Coder, the code generator uses the NVIDIA
compiler and libraries included with MATLAB. The CUDA Toolkit installed with MATLAB includes
CUDA runtime, cuBLAS, cuFFT, cuSOLVER, cuDNN, and TensorRT libraries. To use CUDA MEX, you
must have a compatible C/C++ compiler, a CUDA enabled GPU device and a CUDA compatible
graphics driver.

For more information, see Installing Prerequisite Products.
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cuFFT Library Support: Improved performance of generated code for
fast Fourier transform (FFT) functions
Compared to previous releases, the code generated for FFT functions by using the cuFFT library calls
can have improved performance. In R2020b, the software caches multiple cuFFT plans that have the
same geometry. Because some cuFFT plans allocate memory on the GPU, caching can improve
memory utilization and improve performance for repeatedly running FFT calls.

Deep Learning Networks: Generate code for additional networks
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports these additional
pretrained networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

Code generation by using the NVIDIA TensorRT Library supports these additional pretrained
networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

Code generation by using the ARM Compute Library supports these additional pretrained networks:

• efficientnetb0 – EfficientNet-b0 model network trained on the ImageNet data set.

For more information, see Supported Networks and Layers.

Deep Learning Layers: Generate code for additional layers
Code generation by using the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• focalLossLayer predicts object classes using focal loss.
• gruLayer creates a gated recurrent unit (GRU) that learns dependencies between time steps in

time series and sequence data.
• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sequenceFoldingLayer to convert a batch of image sequences to a batch of images.
• sequenceUnfoldingLayer to restore the sequence structure of the input data after sequence

folding.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.
• softplusLayer for actor or critic network.

Code generation by using the NVIDIA TensorRT Library supports these additional layers:

• focalLossLayer predicts object classes using focal loss.
• gruLayer creates a gated recurrent unit (GRU) that learns dependencies between time steps in

time series and sequence data.
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• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.
• softplusLayer for actor or critic network.

Code generation for ARM Mali GPUs using the ARM Compute Library supports these additional
layers:

• focalLossLayer predicts object classes using focal loss.
• rcnnBoxRegressionLayer refines bounding box locations by using a smooth L1 loss function.
• rpnClassificationLayer for region proposal networks RPNs.
• scalingLayer for actor or critic network.
• sigmoidLayer applies a sigmoid function to its input such that its output is bounded in the

interval (0,1).
• spaceToDepthLayer permutes the spatial blocks of the input into the depth dimension.

For more information, see Supported Networks and Layers.

Code generation for additional Computer Vision Toolbox function
• pcsegdist

Code generation for additional Signal Processing Toolbox functions
• fsst
• ifsst
• filtfilt

New examples
This release adds the following examples:

• GPU Code Generation for Lane Detection in Simulink – This example shows how to generate
CUDA code for a Simulink model that can detect and output lane marker boundaries on an image.
This example takes RGB image as an input and uses the imresize, rgb2gray, ordfilt2,
hough, houghpeaks, and houghlines functions that are part of Image Processing Toolbox to
detect lane markings.

• GPU Code Generation for a Fog Rectification Simulink Model – Demonstrates how to generate
CUDA code from the Simulink model that takes a foggy image as input and produces a defogged
image as output. This example is a typical implementation of fog rectification algorithm. The
example uses conv2, rgb2gray, and imhist functions.

• Code Generation for a Deep Learning Simulink Model to Classify ECG Signals – Shows how you
can use powerful signal processing techniques and Convolutional Neural Networks together to
classify ECG signals in Simulink. This example also shows how to generate CUDA from the
Simulink model.
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• Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection –
Shows how to develop a CUDA application from a Simulink model that performs lane and vehicle
detection using convolutional neural networks (CNN). This example takes the frames of a traffic
video as an input, outputs two lane boundaries that correspond to the left and right lanes of the
ego vehicle, and detects vehicles in the frame.

• Code Generation for Lidar Point Cloud Segmentation Network – Shows how to generate CUDA
MEX for a lidar (light detection and ranging) semantic segmentation network that uses deep
learning. This example uses the SqueezeSegV2 network trained to segment organized lidar point
clouds belonging to three classes (background, car, and truck). The generated MEX takes a point
cloud input and performs prediction on the point cloud by using the DAGNetwork object for the
SqueezeSegV2 network.

• Code Generation for a Video Classification Network – Shows how to generate CUDA code for a
deep learning network that classifies video and deploy the generated code onto the NVIDIA Jetson
Xavier board using the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms. The deep learning network has both convolutional and bidirectional long short-term
memory (BiLSTM) layers. The generated application reads the data from a specified video file as a
sequence of video frames and outputs a label that classifies the activity in the video.

• Code Generation For Object Detection Using YOLO v3 Deep Learning – This example shows how
to generate CUDA® MEX for a you only look once (YOLO) v3 object detector with custom layers.
The example uses YOLO v3 object detection to illustrate:

• CUDA code generation for a deep learning network with custom layers.
• Convert a deep learning dlnetwork object into a DAGNetwork object for code generation.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed
cnncodegen Function: ARM Mali targets support only
Behavior change in future release

In a future release, the cnncodegen function will generate C++ code and build a static library for
only the ARM Mali GPU processor. You can continue to use the 'arm-compute-mali' value for the
'targetlib' argument to target an ARM Mali GPU by using the ARM Compute Library for
computer vision and machine learning.

For all other targets, use the codegen command. To learn about targeting cuDNN targets by using
the codegen function, see Code Generation for Deep Learning Networks by Using cuDNN. To learn
about targeting TensorRT targets by using the codegen function, see Code Generation for Deep
Learning Networks by Using TensorRT.
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cuBLAS Support: Generate CUDA code for strided and batched matrix
multiply
In R2020a, you can generate CUDA code from MATLAB functions to compute many (small) matrix-
matrix multiplies at once. This technique is known as batched matrix-matrix multiply can potentially
improve device utilization and overall performance.

Use the gpucoder.batchedMatrixMultiply function to perform batched matrix multiply
operation of the form D = (alpha*A)xB.

Use the gpucoder.batchedMatrixMultiplyAdd function to perform batched matrix multiply with
add operation of the form D = (alpha*A)xB + (beta*C). For example,
[D1,D2] = gpucoder.batchedMatrixMultiplyAdd(A1,B1,C1,A2,B2,C2,...
'alpha',0.3,'beta', 0.4,'transpose','TT');

You can also perform strided matrix multiplication for matrix batches, where subsequent matrices are
memory-contiguous by using the gpucoder.stridedMatrixMultiply and
gpucoder.stridedMatrixMultiplyAdd functions. For example,

D = gpucoder.stridedMatrixMultiply(A,B,'alpha',0.4,'transpose','TT');

Single Shot Object Detection (SSD) Networks: Object detection on
NVIDIA GPU by using a single shot multibox detector
In R2020a, you can generate CUDA code for an SSD network (ssdObjectDetector object) and take
advantage of the NVIDIA cuDNN and TensorRT libraries.

The SSD detector uses a single stage object detection network that merges detections predicted from
multiscale features. The SSD is faster than two-stage detectors, such as the Faster R-CNN detector
and can localize objects more accurately compared to single-scale feature detectors such as the
YOLO v2 detector. For more information, see Getting Started with SSD Multibox Detection (Computer
Vision Toolbox).

For more information on the SSD layers supported in this release, see Supported Networks and
Layers. The Code Generation for Object Detection by Using Single Shot Multibox Detector shows how
to generate CUDA code for an SSD based vehicle object detector.

Row-Major Array Layout: Simplify interfacing generated deep learning
code with target libraries by storing arrays in row-major layout
The code that you generate can store array elements in column-major or row-major array layout. In
column-major array layout, the elements of the columns are contiguous in memory. In row-major, the
elements of the rows are contiguous. MATLAB uses column-major array layout by default, whereas
the deep learning networks supported by NVIDIA cuDNN, TensorRT, and ARM Compute libraries use
row-major layout by default.

In previous releases, the code generator produced CUDA C++ code that performed transpose
operations on the row-major data and called predict or activation on the transposed data. In R2020a,
you can choose to generate code that uses row-major array layout. Row-major layout can improve
performance for certain networks and ease integration with other code that also uses row-major
layout. For more information, see Array Layout (MATLAB Coder).
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For more information on deep learning code generation, see Deep Learning with GPU Coder.

Long Short-Term Memory (LSTM) Networks: Generate code for
bidirectional and stateful LSTM
In R2020a, you can generate CUDA code for bidirectional and stateful LSTM networks. A
bidirectional LSTM network is a type of recurrent neural network (RNN) that learns bidirectional
long-term dependencies between time steps of sequence data. Stateful LSTM networks can
remember the state of the network between predictions. The network state can be useful when you
do not have the complete time series in advance, or if you want to make multiple predictions on a
long time series. For more information, see Long Short-Term Memory Networks (Deep Learning
Toolbox).

For a code generation example using stateful LSTM, see Code Generation for a Sequence-to-
Sequence LSTM Network

For more information on the LSTM layers supported in this release, see Supported Networks and
Layers. Use the predictAndUpdateState to predict parts of a time series and update the network
state. Use the resetState to reset the network state between predictions.

Multi-Output Networks: Generate code for networks with multiple
outputs
In R2020a, you can generate code for networks with multiple output layers. For information on
training multiple output networks, see Multiple-Input and Multiple-Output Networks (Deep Learning
Toolbox).

Deep Learning Networks: Generate code for more networks
In R2020a, you can generate code for networks such as Darknet19, Darknet53, NASNet-Large,
NASNet-Mobile, and Inception-ResNet-v2. For more information, see Supported Networks and
Layers.

Generate code for half-precision floating point data type
In R2020a, you can generate CUDA code for half-precision floating point data types in MATLAB. Half-
precision data types occupy only 16 bits of memory, but their floating-point representation enables
them to handle wider dynamic ranges than integer or fixed-point data types of the same size.

For a full list of features that support half-precision code generation, see half. For examples that
demonstrate half-precision code generation, see Edge Detection with Sobel Method in Half-Precision,
Fog Rectification, and Stereo Disparity.

Deep Learning Layers: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
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• Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).
• concatenationLayer that concatenates inputs along a specified dimension.
• Flatten layer (flattenLayer).
• Global max pooling layer (globalMaxPooling2dLayer).
• ssdMergeLayer layer to merge activations from several feature maps.
• Word embedding layer for deep learning networks (wordEmbeddingLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
• Bidirectional long short-term memory (BiLSTM) layer (bilstmLayer).
• concatenationLayer that concatenates inputs along a specified dimension.
• Global max pooling layer (globalMaxPooling2dLayer).
• Long short-term memory (LSTM) layer (lstmLayer).
• Sequence input layer (sequenceInputLayer).
• ssdMergeLayer layer to merge activations from several feature maps.
• Word embedding layer for deep learning networks (wordEmbeddingLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

Code generation with the ARM Compute Library supports these additional layers:

• anchorBoxLayer layer to store anchor boxes for object detection.
• Layer that applies 2-D cropping to the input (crop2dLayer).
• Global max pooling layer (globalMaxPooling2dLayer).
• Affine layer for the ONNX network that performs element-wise scaling of the input followed by an

addition (nnet.onnx.layer.ElementwiseAffineLayer).
• Layer that implements ONNX identity operator (nnet.onnx.layer.IdentityLayer).

For more information, see Supported Networks and Layers.

Code generation for more MATLAB functions
• filter
• fftshift
• circshift

Code generation for more Image Processing Toolbox functions
• bwlookup
• imrotate
• imboxfilt
• imgaussfilt
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Code generation for more Computer Vision Toolbox functions
• disparitySGM
• pointCloud

Code generation for more Signal Processing Toolbox functions
• fftfilt
• stft
• istft

Code generation for Audio Toolbox functions
• mfcc

Deep Learning: Generate code that uses newer versions of ARM
Compute library
In R2020a, you can generate more efficient C++ code for layers and networks by using version 19.05
of the ARM Compute Library for computer vision and machine learning. To learn more about
supported compilers and libraries, see Code Generation for a Sequence-to-Sequence LSTM
NetworkInstalling Prerequisite Products. For an example on targeting the ARM Compute Library, see
Code Generation for Deep Learning Networks Targeting ARM Mali GPUs.

New and updated examples
This release adds the following examples:

• Code Generation for Object Detection by Using Single Shot Multibox Detector – Shows how to
generate CUDA code for an SSD network (ssdObjectDetector object) and take advantage of the
NVIDIA cuDNN libraries. An SSD network is based on a feed-forward convolutional neural
network that detect multiple objects within the image in a single shot. SSD network can be
thought of as having two sub-networks. A feature extraction network, followed by a detection
network..

• Edge Detection with Sobel Method in Half-Precision – Demonstrates edge detection in an image
with a MEX function generated from a MATLAB function. The edge detection algorithm is
implemented with half-precision data type.

This release updates the following examples:

• Code Generation for a Sequence-to-Sequence LSTM Network – demonstrates how to generate
CUDA code for a long short-term memory (LSTM) network. The example generates a MEX
application that makes predictions at each step of an input time series. Two methods are
demonstrated: a method using a standard LSTM network, and a method leveraging the stateful
behavior of the same LSTM network. This example uses accelerometer sensor data from a
smartphone carried on the body and makes predictions on the activity of the wearer. User
movements are classified into one of five categories, namely dancing, running, sitting, standing,
and walking.

• Fog Rectification – Shows the use of image processing functions for GPU code generation. This
example also shows half-precision code generation using GPU Coder.

 

5-5

https://www.mathworks.com/help/releases/R2020a/vision/ref/disparitysgm.html
https://www.mathworks.com/help/releases/R2020a/vision/ref/pointcloud.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/fftfilt.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/stft.html
https://www.mathworks.com/help/releases/R2020a/signal/ref/istft.html
https://www.mathworks.com/help/releases/R2020a/audio/ref/mfcc.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/code-generation-sequence-to-sequence-LSTM.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/code-generation-sequence-to-sequence-LSTM.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/gs/install-prerequisites.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/ug/code-generation-for-deep-learning-networks-with-arm-compute-library.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/gpu-object-detection-ssd.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/sobel-edge-detection-in-half-precision.html
https://www.mathworks.com/help/releases/R2019b/gpucoder/examples/code-generation-sequence-to-sequence-LSTM.html
https://www.mathworks.com/help/releases/R2020a/gpucoder/examples/fog-rectification.html


• Stereo Disparity – Shows how to generate a MEX function from a MATLAB function that computes
the stereo disparity of two images. This example also shows half-precision code generation using
GPU Coder.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.

Functionality being removed or changed
The coder.checkGpuInstallApp has been renamed to gpucoderSetup.

Version History
Functionality What Happens When

You Use This
Functionality?

Use This Instead Compatibility
Considerations

coder.checkGpuInst
allApp

Still runs Use gpucoderSetup Replace all instances of
coder.checkGpuInst
allApp with
gpucoderSetup.
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Long Short-Term Memory (LSTM) Networks: Generate code for
recurrent networks such as LSTM
In R2019b, you can generate CUDA code for an LSTM network and take advantage of the NVIDIA
cuDNN library. An LSTM network is a type of recurrent neural network (RNN) that can learn long-
term dependencies between time steps of sequence data. For more information on the LSTM layers
supported in this release, see Supported Networks and Layers.

Deep Learning Targeting: Deploy deep learning networks to ARM Mali
GPU processors
You can generate code for prediction from a pretrained convolutional neural network (CNN) and
target the code to an embedded platform that uses an ARM Mali GPU processor. The code generator
takes advantage of ARM Compute Library for computer vision and machine learning. The generated
code implements a CNN that has the architecture, layers, and parameters specified in the input
SeriesNetwork or DAGNetwork objects. For more information, see Code Generation for Deep
Learning Networks Targeting ARM Mali GPUs.

For information on the networks and layers supported for code generation, see Supported Networks
and Layers.

TensorRT Support: Support for NVIDIA TensorRT library on the
Windows platform
In R2019b, you can take advantage of the NVIDIA low-latency, high-throughput TensorRT inference
library for your deep learning applications and generate CUDA code on the Windows® platform. For
information on the supported TensorRT version, see Installing Prerequisite Products. To set up your
development computer for code generation, see Setting Up the Prerequisite Products. To generate
CUDA code targeting the TensorRT libraries, see Code Generation for Deep Learning Networks by
Using TensorRT.

Deep Learning Networks: Generate code for more networks
In R2019b, you can generate code for networks such as DeepLab-v3+, MobileNet-v2, ONNX™ (Open
Neural Network Exchange), and Xception. For more information, see Supported Networks and
Layers.

Deep Learning Layers: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• Pixel classification layer by using generalized dice loss for semantic segmentation
(dicePixelClassificationLayer)

• Exponential linear unit (ELU) layer (eluLayer)
• 2-D grouped convolutional layer (groupedConvolution2dLayer)
• Long short-term memory (LSTM) layer (lstmLayer)
• All output layers including custom classification or regression output layers created by using

nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer
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• Sequence input layer (sequenceInputLayer)
• Hyperbolic tangent (tanh) layer (tanhLayer)
• Affine layer for the ONNX network that performs element-wise scaling of the input followed by an

addition (nnet.onnx.layer.ElementwiseAffineLayer)
• Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the

channel dimensions (nnet.onnx.layer.FlattenLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• Clipped rectified linear unit (ReLU) layer (clippedReluLayer)
• Pixel classification layer using generalized dice loss for semantic segmentation

(dicePixelClassificationLayer)
• Exponential linear unit (ELU) layer (eluLayer)
• 2-D grouped convolutional layer (groupedConvolution2dLayer)
• All output layers including custom classification or regression output layers created by using

nnet.layer.ClassificationLayer or nnet.layer.RegressionLayer
• Hyperbolic tangent (tanh) layer (tanhLayer)
• Flatten layer for the ONNX network that flattens the spatial dimensions of the input tensor to the

channel dimensions (nnet.onnx.layer.FlattenLayer)

For more information, see Supported Networks and Layers.

1-D reduction operations on the GPU
In R2019b, you can use the gpucoder.reduce function to generate CUDA code that performs
efficient 1-D reduction operations on the GPU. The generated code uses the CUDA shuffle intrinsics to
implement the reduction operation.

For example, to find the sum and max elements of an array A:

function s = myReduce(A)
   s = gpucoder.reduce(A, {@mysum, @mymax}); 
end

function c = mysum(a, b)
   c = a+b;
end

function c = mymax(a, b)
   c = max(a,b);
end

For code generation, the gpucoder.reduce function has these requirements:

• The input must be of numeric or logical data type.
• The function passed through the @handle must be a binary function that accepts two inputs and

returns one output. The inputs and outputs must be of the same data type.
• The function must be commutative and associative.
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Workflow and generated code improvements
R2019b includes the following improvements in the generated code:

• Performance improvement in the code generated for the cumsum function.
• Variables and expression support for specifying dimensions in the kernel pragmas. For more

information, see coder.gpu.kernel.

Code generation for more Image Processing Toolbox functions
• bwconncomp
• bwlabel
• houghlines
• imadjust
• imhist
• imfill
• imreconstruct

Code generation for more MATLAB functions
• interp2
• min
• max
• rgb2gray

Code generation for more Computer Vision Toolbox functions
• selectStrongestBboxMulticlass

Functionality being removed or changed
This release removes support for generating CUDA code by using CUDA Toolkit version 8.

Version History
GPU Coder throws an error if the supported CUDA Toolkit is not found on the development platform.
For information on the supported compilers and libraries, see Installing Prerequisite Products.

New examples
This release adds the following examples:

• Code Generation for a Sequence-to-Sequence LSTM Network – Shows how to generate CUDA
code for a long short-term memory (LSTM) network. The example generates a MEX application
that makes predictions at each step of an input time series. This example uses accelerometer
sensor data from a smartphone carried on the body and makes predictions on the activity of the
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wearer. User movements are classified into one of five categories, namely dancing, running,
sitting, standing, and walking.

• Deep Learning Prediction on ARM Mali GPU– Shows how to use the cnncodegen function to
generate code for an image classification application that uses deep learning on ARM Mali GPUs.
The example uses the MobileNet-v2 DAG network to perform image classification.

• QR Decomposition on an NVIDIA GPU Using cuSOLVER Libraries– Shows how to create a
standalone CUDA executable that leverages the CUDA Solver library (cuSOLVER). The example
uses a curve fitting application that mimics automatic lane tracking on a road to illustrate several
topics, including:

• Fitting an arbitrary-order polynomial to noisy data using matrix QR factorization.
• Using the coder.LAPACKCallback class to provide the LAPACK library information for the

code generator when generating standalone executables.
• Lane Detection on the GPU using houghlines– Shows how to generate CUDA MEX for a

MATLAB function that can detect and output lane marker boundaries on an image. The example
takes an RGB image as input and uses the rgb2gray, ordfilt2, hough, houghpeaks, and
houghlines functions that are part of Image Processing Toolbox to produce the lane detected
output image.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.
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Deep Learning: Generate code for more layers
Code generation with the CUDA Deep Neural Network library (cuDNN) supports these additional
layers:

• Layer that applies 2-D cropping to the input (crop2dLayer)
• One of the layers that allows the network to use features from earlier by making the features

match the feature map size at the later layer (YOLOv2ReorgLayer)
• Output layer for YOLO v2 object detection network (YOLOv2OutputLayer).
• Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).
• Flatten activations into 1-D assuming C-style (row-major) order

(nnet.keras.layer.FlattenCStyleLayer)
• Global average pooling layer for spatial data

(nnet.keras.layer.GlobalAveragePooling2dLayer)
• Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
• Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
• Zero padding layer for 2-D input (nnet.keras.layer.ZeroPadding2dLayer)

Code generation with the NVIDIA TensorRT Library supports these additional layers:

• Layer that applies 2-D cropping to the input (crop2dLayer)
• Depth concatenation layer (depthConcatenationLayer)
• One of the layers that allows the network to use features from earlier by making the features

match the feature map size at the later layer (YOLOv2ReorgLayer)
• Output layer for YOLO v2 object detection network (YOLOv2OutputLayer).
• Transform layer for YOLO v2 object detection network (YOLOv2TransformLayer).
• Flatten activations into 1-D assuming C-style (row-major) order

(nnet.keras.layer.FlattenCStyleLayer)
• Global average pooling layer for spatial data

(nnet.keras.layer.GlobalAveragePooling2dLayer)
• Sigmoid activation layer (nnet.keras.layer.SigmoidLayer)
• Hyperbolic tangent activation layer (nnet.keras.layer.TanhLayer)
• Zero padding layer for 2-D input (nnet.keras.layer.ZeroPadding2dLayer)

For more information on supported networks and layers, see Supported Networks and Layers.

TensorRT Support: Generate code that takes advantage of FP16
optimization in deep learning inference applications
Using TensorRT half-precision (also called FP16) arithmetic support in GPU Coder, the generated
neural network code utilizes reduced memory usage compared to FP32 precision. This enables
deployment of larger networks while taking less time than FP32. To enable half-precision, set the
DataType property of the coder.TensorRTConfig object to 'fp16'. Alternatively, you can also set
the DataType property in the Deep Learning settings tab of the GPU Coder App.
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Deep Learning: Generate code for more networks
In R2019a, you can generate code for networks such as fully convolutional neural networks (FCN),
YOLOv2, and segmentation networks such as U-Net. For more information, see Deep Learning with
GPU Coder.

CUDA optimized transpose function
In this release, you can use the gpucoder.transpose or gpucoder.ctranspose functions to
perform efficient out-of-place non-conjugate or conjugate transpose on the GPU. This implementation
uses shared memory for improved performance. For example,

A = rand(5,10);
B = gpucoder.transpose(A);

This function must not be used for inputs whose dimensions are greater than 2.

Support for unbounded variables
In this release, GPU Coder supports CUDA code generation for MATLAB code that contains
unbounded variables.

Workflow and generated code quality improvements
R2019a includes these workflow and generated code quality improvements:

• Verify and set up the GPU code generation environment by using the
coder.checkGpuInstallApp. The Check GPU Install app is an interactive tool to verify and
set up the GPU code generation environment on your development computer and hardware
platforms such as the NVIDIA DRIVE and Jetson. For more information, see Using the Check GPU
Install App.

You can also use the coder.checkGpuInstall function to perform the same checks from the
MATLAB command line. In this release, the coder.checkGpuInstall function has been updated
to accept a coder.gpuEnvConfig object. The coder.gpuEnvConfig object contains the
configuration parameters that coder.checkGpuInstall uses to verify the GPU code generation
environment. You can continue to use option flags with the coder.checkGpuInstall as in
previous releases, but it is recommended to use the coder.gpuEnvConfig object as this
functionality may be deprecated in a future release.

• Improved handling for loops with dynamic bound variables.
• CUDA profiling integration with the SIL interface.
• Support for the gpuArray function when performing SIL simulation.

Code generation for more MATLAB functions
• conv
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Code generation for more Image Processing Toolbox functions
• hough
• houghpeaks
• ordfilt2

Code generation for more Computer Vision Toolbox functions
• rectifyStereoImages

Code generation for Statistics and Machine Learning Toolbox
functions
In R2019a, you can generate optimized CUDA code for pdist and pdist2 functions from the
Statistics and Machine Learning Toolbox™. The supported distance input argument values are
'euclidean', 'squareeuclidean', 'seuclidean', 'cityblock', 'minkowski',
'chebychev', 'cosine', 'correlation', 'hamming', and 'jaccard'.

Code generation for Wavelet Toolbox function
In R2019a, you can generate optimized CUDA code for the cwt Wavelet Toolbox function. For more
information, see Supported Functions.

New examples
This release adds the following examples:

• Train and Deploy Fully Convolutional Networks for Semantic Segmentation – Shows how to train
and deploy a fully convolutional semantic segmentation network on an NVIDIA GPU by using GPU
Coder.

• Code Generation for Semantic Segmentation Network using U-net – Demonstrates code
generation for an image segmentation application that uses U-Net, a popular deep learning
network for image segmentation.

• Code Generation for Object Detection Using YOLO v2 – Demonstrates code generation for an
object detector using a deep learning technique named you only look once (YOLO) v2.

• Top-Hat Filtering on Jetson TX2– Demonstrates code generation for a top-hat filtering application
that removes uneven background illumination on NVIDIA Jetson TX2. This example requires the
MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms.

• Deployment and Classification of Webcam Images on NVIDIA Jetson TX2 Platform– Demonstrates
deployment and classification of webcam Images on NVIDIA Jetson TX2 Platform. This example
requires the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms.

• Edge Detection on GPU using Order statistic filters– Demonstrates code generation for edge
detection algorithm on the GPU using order statistic filters.

• Image Denoising on the GPU using Median filter– Demonstrates code generation for an image
denoising application on the GPU using median filter.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter doc gpucoder.
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Deep Learning Retargetability: Deploy applications that use deep
learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using
the codegen function
When targeting Intel® MKL-DNN, and NVIDIA TensorRT libraries, GPU Coder now supports code
generation for deep learning networks by using the codegen function. In previous releases, you
could use the codegen function to target only NVIDIA cuDNN libraries.

To use the codegen function, create a GPU configuration object and set the
DeepLearningConfig.TargetLib property to 'cudnn', 'mkldnn', or 'tensorrt'. For more
information, see Code Generation for Deep Learning Networks with TensorRT and Code Generation
for Deep Learning Networks with MKL-DNN (MATLAB Coder).

Version History
In R2018b, you must install the MATLAB Coder Interface for Deep Learning Libraries and GPU Coder
Interface for Deep Learning Libraries to generate code for deep learning networks.

In previous releases, you could target NVIDIA cuDNN libraries without specifying a target library in
the code configuration object. In R2018b, you must set the cfg.DeepLearningConfig =
coder.DeepLearningConfig('cudnn') configuration object to target cuDNN libraries.

Thrust Library Support: Generate GPU-accelerated code for sort and
reduction operations by using the Thrust library
With Thrust library support in GPU Coder, you can take advantage of GPU-accelerated primitives
such as sort to implement complex high-performance parallel applications. When your MATLAB code
uses gpucoder.sort function instead of sort, GPU Coder can generate calls to the Thrust sort
primitives. For more information, see Thrust Example.

Deep Learning Optimization: Improve performance and memory
utilization through auto-tuning, layer fusion, and buffer minimization
When generating code for deep learning networks by using the cuDNN libraries, you can now take
advantage of the auto-tuning functionality in the library to select an optimal convolutional algorithm.
The convolutional algorithm selection is based on the input, kernel sizes, and memory availability
resulting in improved performance. To control the auto-tuning functionality, use the
DeepLearningConfig.AutoTuning property of the GPU code configuration object. This capability
is available only when targeting cuDNN libraries and is enabled by default. For more information, see
coder.CuDNNConfig.

In R2018b, the code generator uses layer fusion and double buffering techniques to generate
optimized code for deep learning networks.

• Convolutional and Rectified Linear Unit (ReLU) layers are fused into FusedConvRelu layer.
• Convolutional and Batch normalization layers are also fused to a convolutional layer with
modified weights and biases.

• Convolutional, Batch normalization layer, and Rectified Linear Unit (ReLU) layers are also fused as
FusedConvRelu layer.

R2018b

8-2

https://www.mathworks.com/help/releases/R2018b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/code-generation-using-tensorrt.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2018b/coder/ug/code-generation-for-deep-learning-networks-with-mkl-dnn.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/gpucoder.sort.html
https://www.mathworks.com/help/releases/R2018b/matlab/ref/sort.html
https://www.mathworks.com/help/releases/R2018b/gpucoder/ug/kernels-from-library-calls.html#mw_2fbb7cd6-1203-45e5-b47f-6f0ad39385f1
https://www.mathworks.com/help/releases/R2018b/gpucoder/ref/coder.cudnnconfig.html


gpuArray Support: Use gpuArray arguments at the I/O of MEX targets
In R2018b, you can use gpuArray arguments as inputs and outputs to an entry-point function when
generating CUDA MEX code. Because the gpuArray function copies the array to the GPU, the
generated code contains fewer cudaMemcpy calls. To use this functionality, use coder.Type to
represent the gpuArray type of an entry-point function input. For example, you can use
coder.typeof(rand(20),'Gpu',true) or coder.typeof(gpuArray(rand(20))) to create a
gpuArray type for code generation.

Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE
platforms
In R2018b, you can use the MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE
Platforms to communicate with, deploy, and run CUDA code on NVIDIA platforms such as Jetson and
DRIVE. To download the support package, use the Add-on Explorer. For more information on the
supported workflows, see GPU Coder Support Package for NVIDIA GPUs.

Calling External CUDA Functions: Use GPU arguments that pass by
reference when using coder.ceval
In R2018b, you can pass GPU arguments by reference when calling external CUDA functions with
coder.ceval. To make coder.ceval pass arguments by reference, use the constructs coder.ref,
coder.rref, and coder.wref.

Deep Learning Layers: Generate code for new network layers
In R2018b, you can now generate code for these layers:

• Dilated convolutional
• Variable-size I/O

Ease-of-use and traceability improvements
This release contains a new traceability report that highlights sections of MATLAB code that are
running on the GPU, a new diagnosis report to analyze performance breakdown, and an integrated
GPU profiling report to analyze execution profiles of the generated code.

You can use the traceability feature to understand how the code generator maps your algorithm to
GPU kernels, debug issues in the generated code, and evaluate the quality of the generated code. For
more information on using the traceability feature, see Trace Between MATLAB Code and Generated
CUDA Code.

In R2018b, the code generation report has a new diagnostic section that analyzes performance issues
with your MATLAB algorithm and categorizes them as kernel issues, memory issues, pragma issues,
and design pattern issues. The report provides suggestions for resolving the issues so that you can
generate more efficient CUDA code. To enable report generation, set the GenerateReport property
in the code configuration object or enable the Always create a code generation report option in
More Settings ->Debugging pane of the GPU Coder app.

For information on the GPU profiling report, see Analyze Execution Profiles of the Generated Code.
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In R2018b, CUDA syntax highlighting in the MATLAB editor helps you identify the different CUDA
language elements in the generated code. You can change syntax highlighting preferences. On the
Home tab, in the Environment section, click Preferences. Select MATLAB > Editor/Debugger >
Language > CUDA.

Code generation for more Image Processing Toolbox functions
In R2018b, you can generate optimized CUDA code for the imresize Image Processing Toolbox
function. For more information, see Supported Functions.

Deep learning examples
This release adds two deep learning examples:

• Integrating Deep Learning with GPU Coder into Simulink – Demonstrates integration of the CUDA
code generated for a deep learning network into the Simulink environment.

• Code Generation for Denoising Deep Neural Network – Shows how to generate CUDA code for a
denoising convolutional neural network (DnCNN). You can use the denoising network to estimate
noise in a noisy image, and then remove it to obtain a denoised image.

• Deep Learning Prediction with NVIDIA TensorRT – Shows how to generate CUDA code by using
the TensorRT library.

• Deep Learning Prediction with Different Batch Sizes – Shows how to use different batch sizes
when generating code for a deep learning network.

To see the full list of examples for GPU Coder, at the MATLAB command line, enter
gpucoderexamples.

Functionality being removed or changed

Version History
• Specifying the C language for the generated code through the TargetLang property of

coder.config will be removed in a future release.

Functionality What Happens When You Use
This Functionality?

Use This Instead

TargetLang = 'C' property of
coder.config object.

You get a warning message. TargetLang = 'C++' property of
coder.config object.

• To perform code generation for deep learning networks, you must install the GPU Coder
Interface for Deep Learning Libraries and MATLAB Coder Interface for Deep
Learning Libraries support packages. To install these support packages, select the support
package from the MATLAB Add-Ons menu.

Functionality What Happens When You Use
This Functionality?

Solution

Using cnncodegen or codegen
functions to generate code for
deep learning networks.

You get an error message. To install the required support
packages, follow the links in the
error message.
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Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep
learning networks with DAG topology
You can use GPU Coder in tandem with the Neural Network Toolbox™ to generate CUDA code for
DAG networks. A DAG network is a neural network for deep learning that can have its layers
arranged as a directed acyclic graph. You can use a pretrained DAG network or train one by using the
Neural Network Toolbox. See, Supported Networks and Layers.

Deep Learning Layers: Generate CUDA code for popular networks such
as GoogLeNet, ResNet, and SegNet
In R2018a, you can target generate CUDA code for popular convolutional neural networks such as
GoogLeNet, ResNet, and SegNet. See, Supported Networks and Layers

TensorRT Support: Generate code that takes advantage of NVIDIA
deep learning inference optimizer and run time
With TensorRT support in GPU Coder, you can take advantage of the NVIDIA low-latency, high
throughput inference library for your deep learning applications on embedded platforms. For more
information, see CNN Code Generation, and cnncodegen.

Multi-Platform Deep Learning Targeting: Deploy deep learning
networks to Intel and ARM processors
Generate code that takes advantage of Intel Math Kernel Library for Deep Neural Networks (MKL-
DNN) for Intel CPUs, and ARM Compute libraries for mobile platforms. For more information, see
CNN Code Generation.

Code generation for Image Processing Toolbox functions
In R2018a, you can generate optimized code for Image Processing Toolbox functions such as
imerode, imdilate, and imwarp. For more information, see Supported Functions.

Code generation for Computer Vision System Toolbox functions
Generate optimized CUDA code for the matchfeatures function. For more information, see
Supported Functions.

Loop and kernel optimization
In R2018a, you can map while loops and dynamically bound for-loops to GPU kernels. This feature
allows you to generate CUDA code containing kernels with variable and symbolic dimensions.

Deep learning examples
This release adds three deep learning examples:

• Pedestrian Detection – Demonstrates code generation for a pedestrian detection implementation
that has several applications in the fields of autonomous driving, surveillance, and robotics.

R2018a
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• Traffic Sign Detection and Recognition – Demonstrates how to generate CUDA MEX code to detect
traffic signs, suppress overlapping detections, and classify the detected traffic signs.

• Logo Recognition Network – Demonstrates code generation for a logo classification application
that can recognize 32 logos under various lightning conditions and camera motions.

Use gpucoderexamples to see the full list of examples that ship with GPU Coder.
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CUDA C and C++ code Generation
Generate CUDA C and C++ code from MATLAB code. You can integrate the generated code into your
project as source code, static libraries, or dynamic libraries. The generated code calls optimized
NVIDIA CUDA libraries, including cuDNN, cuSolver, cuFFT, and cuBLAS. To generate CUDA code,
you must have the following products:

• MATLAB
• GPU Coder
• MATLAB Coder
• Parallel Computing Toolbox™

For more information, see Getting Started with GPU Coder.

Deep Learning Network Support
You can use GPU Coder in tandem with the Neural Network Toolbox to generate CUDA code for deep
learning networks. You can use the Neural Network Toolbox to create and train a neural network, or
import pretrained networks like VGG, MNIST, AlexNET, YOLO. See, Deep Learning.

Image Processing Toolbox Support
GPU Coder supports CUDA code generation for many of the functions from MATLAB and the Image
Processing Toolbox.

CUDA Kernel and memory Optimizations
GPU Coder performs program parallelism analysis to identify segments of code that run on the CPU
and segments that run on the GPU. After this kernel partitioning and optimization is complete, GPU
Coder performs memory optimization by analyzing the data dependency between the CPU and GPU
partitions. GPU Coder also provides you pragmas and design patterns that can be used to generate
optimized CUDA code.

MEX Function Generation for code Verification and Acceleration
With GPU Coder, you can also use the generated code within the MATLAB environment to accelerate
computationally intensive portions of your MATLAB code. MEX functionality also allows you to verify
the numerical correctness of the generated code.

Legacy CUDA code Integration
If you have highly optimized CUDA code for certain subfunctions that you want to incorporate into
your generated code, GPU Coder extends the coder.ceval functionality to help you achieve this
goal.
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Hardware Integration with NVIDIA Tegra
You can use GPU Coder to generate CUDA code for targeting embedded GPU platforms. Specifically,
you can target the NVIDIA Tegra® development boards Jetson TK1, TX1, and TX2 on either Windows
or Linux® systems.

Code Profiling and Verification
By using GPU Coder with Embedded Coder®, you can verify the numerical behavior of the generated
C/C++ code by using software-in-the-loop (SIL) execution.

 

10-3




	R2022a
	Code Optimization: Minimize cudaMemcpy calls at function boundaries
	GPU Memory Manager: Additional customization options for GPU memory pools
	GPU Memory Manager: Use memory pools for CUDA libraries
	Simulink Code Generation: Control code generation using custom system target files
	Simulink Deep Learning: Generate code for dlnetwork workflows that use deep learning arrays
	Generate CUDA code for half-precision data types in MATLAB Function blocks
	Code generation from MATLAB for dlnetwork objects that contain image sequences
	Deep Learning Arrays: Generate code for more functions that use dlarray
	Mixed-Precision Deep Learning: Perform inference in INT8 precision for fully connected layer
	Deep Learning Networks: Generate code for additional networks
	Deep Learning Layers: Generate code for additional layers
	Code generation for more Image Processing Toolbox functions
	Code generation for more Lidar Toolbox functions
	Functionality being removed or changed
	Unified memory allocation mode on host being removed


	R2021b
	GPU Memory Manager: Improve allocation efficiency and run-time performance through GPU memory pools
	Atomic Functions: Generate code that uses CUDA atomic intrinsics
	Improvements to reduction operations by using gpucoder.reduce
	Function Inlining: Fine-tune readability and speed of generated code
	GPU Profiling: Generate code execution profiling report by using NVIDIA Nsight Systems
	Deep Learning Workflow: Update network parameters after code generation
	Deep Learning Arrays: Generate code for more functions that use dlarray
	Custom Layers: Use dlarray in deep learning networks that have custom layers
	Code generation from MATLAB for dlnetwork that contains sequences
	Mixed-Precision Deep Learning: Perform inference in INT8 precision for additional networks
	Simulink Deep Learning: Generate code for custom layers
	Deep Learning Layers: Generate code for additional layers
	Code generation for page-wise matrix multiplication
	Code generation for additional Computer Vision Toolbox functions
	Code generation for more Image Processing Toolbox functions
	Code generation for additional Signal Processing Toolbox function
	New and updated examples
	Functionality being removed or changed
	cnncodegen Function: ARM Mali target support only
	Unified memory allocation mode on host being removed


	R2021a
	Code Optimization: Control the number of blocks created during kernel launch
	Generate code from MATLAB for dlnetwork workflows that uses deep learning arrays
	Generate code that uses newer versions of NVIDIA cuDNN and TensorRT libraries
	Deep Learning Layers: Generate code for additional layers
	Code generation for additional Computer Vision Toolbox functions
	Code generation for additional Wavelet Toolbox functions
	Code generation for additional MATLAB functions
	GPU Coder Support Package for NVIDIA GPUs is moved to MATLAB Coder Support Package for NVIDIA Jetson and NVIDIA DRIVE Platforms
	Functionality being removed or changed
	cnncodegen Function: ARM Mali target support only
	Deprecating support for unified memory allocation mode on host


	R2020b
	Simulink Support: Generate, build, and deploy Simulink models to NVIDIA GPUs
	Deep Learning Simulink Support: Generate, build, and deploy deep learning networks in Simulink models to NVIDIA GPUs
	Simulink Support: SIL, PIL, and external mode simulations
	Persistent Variables: Create persistent memory on the GPU
	Wavelet Toolbox Code Generation: Generate code for FFT-based FIR filtering and Short-time Fourier transform functions
	Deep Learning: Generate code for custom layers
	Multi-Input Networks: Generate code for networks that have multiple inputs
	Convolutional Recurrent Neural Networks: Generate code for convolutional LSTM
	Long Short-Term Memory (LSTM) Networks: Generate code for network activations
	Workflow improvements
	cuFFT Library Support: Improved performance of generated code for fast Fourier transform (FFT) functions
	Deep Learning Networks: Generate code for additional networks
	Deep Learning Layers: Generate code for additional layers
	Code generation for additional Computer Vision Toolbox function
	Code generation for additional Signal Processing Toolbox functions
	New examples
	Functionality being removed or changed
	cnncodegen Function: ARM Mali targets support only


	R2020a
	cuBLAS Support: Generate CUDA code for strided and batched matrix multiply
	Single Shot Object Detection (SSD) Networks: Object detection on NVIDIA GPU by using a single shot multibox detector
	Row-Major Array Layout: Simplify interfacing generated deep learning code with target libraries by storing arrays in row-major layout
	Long Short-Term Memory (LSTM) Networks: Generate code for bidirectional and stateful LSTM
	Multi-Output Networks: Generate code for networks with multiple outputs
	Deep Learning Networks: Generate code for more networks
	Generate code for half-precision floating point data type
	Deep Learning Layers: Generate code for more layers
	Code generation for more MATLAB functions
	Code generation for more Image Processing Toolbox functions
	Code generation for more Computer Vision Toolbox functions
	Code generation for more Signal Processing Toolbox functions
	Code generation for Audio Toolbox functions
	Deep Learning: Generate code that uses newer versions of ARM Compute library
	New and updated examples
	Functionality being removed or changed

	R2019b
	Long Short-Term Memory (LSTM) Networks: Generate code for recurrent networks such as LSTM
	Deep Learning Targeting: Deploy deep learning networks to ARM Mali GPU processors
	TensorRT Support: Support for NVIDIA TensorRT library on the Windows platform
	Deep Learning Networks: Generate code for more networks
	Deep Learning Layers: Generate code for more layers
	1-D reduction operations on the GPU
	Workflow and generated code improvements
	Code generation for more Image Processing Toolbox functions
	Code generation for more MATLAB functions
	Code generation for more Computer Vision Toolbox functions
	Functionality being removed or changed
	New examples

	R2019a
	Deep Learning: Generate code for more layers
	TensorRT Support: Generate code that takes advantage of FP16 optimization in deep learning inference applications
	Deep Learning: Generate code for more networks
	CUDA optimized transpose function
	Support for unbounded variables
	Workflow and generated code quality improvements
	Code generation for more MATLAB functions
	Code generation for more Image Processing Toolbox functions
	Code generation for more Computer Vision Toolbox functions
	Code generation for Statistics and Machine Learning Toolbox functions
	Code generation for Wavelet Toolbox function
	New examples

	R2018b
	Deep Learning Retargetability: Deploy applications that use deep learning networks onto Intel MKL-DNN, and NVIDIA TensorRT by using the codegen function
	Thrust Library Support: Generate GPU-accelerated code for sort and reduction operations by using the Thrust library
	Deep Learning Optimization: Improve performance and memory utilization through auto-tuning, layer fusion, and buffer minimization
	gpuArray Support: Use gpuArray arguments at the I/O of MEX targets
	Support Package for NVIDIA GPUs: Target NVIDIA Jetson and DRIVE platforms​​
	Calling External CUDA Functions: Use GPU arguments that pass by reference when using coder.ceval
	Deep Learning Layers: Generate code for new network layers
	Ease-of-use and traceability improvements
	Code generation for more Image Processing Toolbox functions
	Deep learning examples
	Functionality being removed or changed

	R2018a
	Directed Acyclic Graph (DAG) Networks: Generate CUDA code for deep learning networks with DAG topology
	Deep Learning Layers: Generate CUDA code for popular networks such as GoogLeNet, ResNet, and SegNet
	TensorRT Support: Generate code that takes advantage of NVIDIA deep learning inference optimizer and run time
	Multi-Platform Deep Learning Targeting: Deploy deep learning networks to Intel and ARM processors
	Code generation for Image Processing Toolbox functions
	Code generation for Computer Vision System Toolbox functions
	Loop and kernel optimization
	Deep learning examples

	R2017b
	CUDA C and C++ code Generation
	Deep Learning Network Support
	Image Processing Toolbox Support
	CUDA Kernel and memory Optimizations
	MEX Function Generation for code Verification and Acceleration
	Legacy CUDA code Integration
	Hardware Integration with NVIDIA Tegra
	Code Profiling and Verification


